Part Number Hot Search : 
0401N85 12S15 2SC3307 16S64 UPD78 BRF10100 S6B02 MC1699
Product Description
Full Text Search
 

To Download MB3827 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FUJITSU SEMICONDUCTOR DATA SHEET
DS04-27222-1E
ASSP
For Power Supply Applications
6-ch DC/DC Converter IC
With Synchronous Rectification for voltage step-up and step-down
MB3827
s DESCRIPTION
The MB3827 is a pulse width modulation (PWM) type 6-channel DC/DC converter IC with, synchronous rectification for voltage step-up and step-down. The MB3827 is ideal for low voltage, high efficiency, compact applications and for down conversion and up/down conversion (with two types of voltage step-up/step-down methods allowing input/output relations to be set independently). In addition the MB3827 features a built-in self-supply power channel (channel 7) providing a wide range of supply voltages, and operates from two dry-cell batteries. This product is ideal for high performance portable devices such as digital still cameras.
s FEATURES
* * * * * * * * Compatible with step-up/step-down switching methods (channel 1) Compatible with step-up/step-down Zeta methods (channels 2 to 6) Synchronous rectification (channels 1 and 2) Low start-up voltage : 1.8 V (channel 7 for self-power supply) Power supply voltage range : 4 V to 13 V (channels 1 to 6) Built-in high-precision reference voltage generator : 2.5 V1% Oscillator frequency range : 100 kHz to 800 kHz Error amplifier output for soft start (channels 1 to 6)
s PACKAGE
64-pin plastic LQFP
(FPT-64P-M03)
2
XENB1-6 -IN7-2 -IN7-1
MB3827
GND(O)5,6,7
OUT(A)6
-IN(C)6
-IN(A)6
OUT7
s PIN ASSIGNMENT
DTC5 +IN7 RB7 -IN6 FB6 FB7 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 VCC(O)5,6,7 OUT6 OUT5 62 61 60 59 58 57 56 55 54 53 52 51 50 49 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 OUT4 OUT3 VSS(O)3,4,5,6 VCC(O)3,4 OUT2-2 GND(O)2,3,4 OUT2-1 VSS(O)1,2 VCC(O)1,2 OUT1-1 VG(O)1 OUT1-2 OUT1-3
DTC6
DTC7
-IN(C)5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 63 64 -IN5 FB5 FB4 -IN4 DTC4 -IN(C)8 VREF GND VCC CTL1-4,7 CTL5 CTL6 CS1-6 CSCP VB
RT
CT
FB3
FB2
FB1
-IN3
-IN2
-IN1
RB1
DTC3
DTC2
DTC1-4
DTC1-3
DTC1-1
OUT1-4
GND(O)1
MB3827
s PIN DESCRIPTION
Pin No. 45 44 43 42 CH 1 41 52 50 47 49 48 38 39 CH 2 40 55 57 37 CH 3 36 35 60 20 CH 4 21 22 61 19 18 CH 5 17 16 62 Symbol FB1 -IN1 DTC1-1 DTC1-3 DTC1-4 OUT1-1 OUT1-2 RB1 OUT1-3 OUT1-4 FB2 -IN2 DTC2 OUT2-1 OUT2-2 FB3 -IN3 DTC3 OUT3 FB4 -IN4 DTC4 OUT4 FB5 -IN5 -IN(C)5 DTC5 OUT5 I/O O I I I I O O -- O O O I I O O O I I O O I I O O I I I O Descriptions Channel 1 error amplifier output pin. Channel 1 error amplifier inverted input pin. Channel 1 step-down main side dead time control pin. Channel 1 step-up main side dead time control pin. Channel 1 step-up synchronous rectifier side dead time control pin. Channel 1 step-down main side output pin. Channel 1 step-down synchronous rectifier side output pin. Channel 1 step-up main side output current setting pin. Channel 1 step-up main side output pin. Channel 1 step-up synchronous rectifier side output pin. Channel 2 error amplifier output pin. Channel 2 error amplifier inverted input pin. Channel 2 dead time control pin. Channel 2 main side output pin. Channel 2 synchronous rectifier side output pin. Channel 3 error amplifier output pin. Channel 3 error amplifier inverted input pin. Channel 3 dead time control pin. Channel 3 output pin. Channel 4 error amplifier output pin. Channel 4 error amplifier inverted input pin. Channel 4 dead time control pin. Channel 4 output pin. Channel 5 error amplifier output pin. Channel 5 error amplifier inverted input pin. Channel 5 short detection comparator input pin. Channel 5 dead time control pin. Channel 5 output pin.
(Continued)
3
MB3827
(Continued) Pin No.
10 11 13 CH 6 12 14 15 63 CH 7 (for self power supply) 5 6 8 7 9 1 2 33
Symbol -IN(A)6 OUT(A)6 FB6 -IN6 -IN4(C)6 DTC6 OUT6 FB7 -IN7-1 +IN7 -IN7-2 DTC7 OUT7 RB7 RT
I/O I O O I I I O O I I I I O -- --
Descriptions Channel 6 inverted amplifier input pin. Channel 6 inverted amplifier output pin. Channel 6 error amplifier output pin. Channel 6 error amplifier inverted input pin. Channel 6 short detection comparator input pin. Channel 6 dead time control pin. Channel 6 output pin. Channel 7 error amplifier output pin. Channel 7 error amplifier 1 inverted input pin. Channel 7 error amplifier non-inverted input pin. Channel 7 error amplifier 2 inverted input pin. Channel 7 dead time control pin. Channel 7 output pin. Channel 7 output current setting pin. Triangular wave frequency setting resistor connection pin.
Triangular-Wave Oscillator Circuit
34
CT
--
Triangular wave frequency setting capacitor connection pin. Power supply control circuit pin.(channel 1 to 4 and 7) "H" level: Power supply active mode "L" level: Standby mode Channel 5 control circuit pin. When CTL1-4,7 pins = "H" level "H" level: Channel 5 in active mode "L" level: Channel 5 in standby mode Channel 6 control circuit pin. When CTL1-4,7 pins = "H" level "H" level: Channel 6 in active mode "L" level: Channel 6 in standby mode Short detection comparator input pin. Short protection circuit capacitor connection pin. Soft start circuit capacitor connection pin (channel 1 to 6). VREF control pin (channel 1 to 6 output control pin). When CTL1-4, 7 pin = "H" "H" level: VREF "L" level, channel 1 to 6 output "OFF" "L" level: VREF "H" level, channel 1 to 6 output "active"
27
CTL1-4, 7
I
28
CTL5
I
Control Circuit
29
CTL6
I
23 31 30
-IN(C)8 CSCP CS1-6
I -- --
4
XENB1-6
I
(Continued)
4
MB3827
(Continued) Pin No.
26 53 58 64 54 Power Supply Circuit 51 59 24 32 25 46 56 3
Symbol VCC VCC(O)1,2 VCC(O)3,4 VCC(O)5,6,7 VSS(O)1,2 VG(O)1 VSS(O)3,4,5,6 VREF VB GND GND(O)1 GND(O)2,3,4 GND(O)5,6,7
I/O -- -- -- -- -- -- -- O O -- -- -- --
Description Reference voltage and control circuit power supply pin. Output circuit power supply pin (Channel 1, 2). Output circuit power supply pin (Channel 3, 4). Output circuit power supply pin (Channel 5, 6, 7). Main side output circuit power supply pin (Channel 1, 2). Step-up synchronous rectifier side output circuit power supply pin (Channel 1). Output circuit power supply pin (Channel 3, 4, 5, 6). Reference voltage output pin. Triangular wave oscillator regulator output pin. Ground pin. Output circuit ground pin (Channel 1). Output circuit ground pin (Channel 2, 3, 4). Output circuit ground pin (Channel 5, 6, 7).
5
MB3827
s BLOCK DIAGRAM
* General view
FB1 45 -IN1 44 Error - Amp.1 + + 1.26 V DTC1-1 43 - + + DTC1-3 42 SCP Comp.1 VB1-1 (0.50 V) PWM Comp.1-1 + + - PWM Comp.1-2 + Drive 1-2
CH1
Drive 1-1
53 VCC(O)1, 2
VB1-2 (0.55 V)
52 OUT1-1 54 VSS(O)1, 2 50 OUT1-2 47 RB1
1.0 V
DTC1-4 41 RB1 + SEL Comp. 1.26 V FB2 38 -IN2 39 Error - Amp.2 + + 1.26 V SCP Comp.2 - + + 1.0 V DTC2 40 -
- PWM Comp.1-3 - - + VB1-4 PWM (0.02 V) Comp.1-4 + + -
Drive 1-3
49 OUT1-3 51 VG(O)1
Drive 1-4
48 OUT1-4
46 GND(O)1 PWM Comp.2-1 + + - PWM Comp.2-2 + - Drive 2-2 57 OUT2-2
CH2
Drive 2-1
A
55 OUT2-1
VB2 (0.04 V)
FB3 37 -IN3 36
Error - Amp.3 + + 1.26 V SCP Comp.3 - + +
PWM Comp.3 + + -
CH3
Drive 3
58 VCC(O)3, 4
60 OUT3 59 VSS(O)3, 4, 5, 6
1.0 V DTC3 35
FB4 20 -IN4 21
Error - Amp.4 + + 1.26 V SCP Comp.4 - + + 1.0 V
PWM Comp.4 + + -
CH4
Drive 4 61 OUT4
DTC4 22 56 GND(O)2, 3, 4 FB5 19 -IN5 18
CH5
Error - Amp.5 + + 1.26 V SCP Comp.5 - + + 1.26 V PWM Comp.5 + + -
64 VCC(O)5, 6, 7
Drive 5
62 OUT5
-IN(C)5 17
B
DTC5 16
-IN(A)6 10
- +
INV Amp.6
CH6
OUT(A)6 11 FB6 13 -IN6 12 Error - Amp.6 + + 1.26 V SCP Comp.6 - + + 1.26 V DTC6 15
PWM Comp.6 + + -
Drive 6
63 OUT6
-IN(C)6 14
FB7 5 -IN7-1 6 +IN7 8 10 k -IN7-2 7 - +
Error Amp.7
0.77 V
VB : 2 V 48.5 k PWM - Comp.7 - +
CH7
Drive 7 1 OUT7 2 RB7
Voffset 1.6 V
30.1 k SCP Comp.7
+ DTC7 9 -
-IN7(C)8 23
VSCP 0.9 V SCP Comp.8 - + 1.26 V
3 GND(O)5, 6, 7
CTL1-4 CS CTL CTL5 28 Logic CTL6 29 Buff Buff x0.8
+ -
Power Comp.
C
0.6 V -1.8 V -1.1 V -1.8 V -1.1 V -0.8 V -0.3 V
4 XENB1-6
CS1-6 30 UVLO Power ON/OFF CTL 25 GND 26 VCC
OSC 2V 32
SCP
Ref 2.5 V 24 VREF
27 CTL1-4, 7
33
34 CT
31 CSCP
VB RT
6
MB3827
* Enlarged view of A
FB1 45 -IN1 44
Error - Amp.1 + + 1.26 V
VB1-1 (0.50 V)
VB1-2 (0.55 V)
PWM Comp.1-1 + + - PWM Comp.1-2 +
CH1
Drive 1-1
53 VCC(O)1, 2
52 OUT1-1 54 VSS(O)1, 2
DTC1-1 43 - + + DTC1-3 42
SCP Comp.1
1.0 V
DTC1-4 41 RB1 + SEL Comp. 1.26 V FB2 38 -IN2 39 Error - Amp.2 + + 1.26 V SCP Comp.2 - + + 1.0 V DTC2 40 -
- PWM Comp.1-3 - - + VB1-4 PWM (0.02 V) Comp.1-4 + + -
Drive 1-2
50 OUT1-2 47 RB1
Drive 1-3
49 OUT1-3 51 VG(O)1
Drive 1-4
48 OUT1-4
46 GND(O)1 PWM Comp.2-1 + + - PWM Comp.2-2 + - Drive 2-2 57 OUT2-2
CH2
Drive 2-1 55 OUT2-1
VB2 (0.04 V)
FB3 37 -IN3 36
Error - Amp.3 + + 1.26 V SCP Comp.3 - + + 1.0 V
PWM Comp.3 + + -
CH3
Drive 3
58 VCC(O)3, 4
60 OUT3 59 VSS(O)3, 4, 5, 6
DTC3 35
7
MB3827
* Enlarged view of B
FB4 20 -IN4 21 Error - Amp.4 + + 1.26 V SCP Comp.4 - + + 1.0 V DTC4 22 56 GND(O)2, 3, 4 FB5 19 -IN5 18
PWM Comp.4 + + -
CH4
Drive 4 61 OUT4
CH5
Error - Amp.5 + + 1.26 V SCP Comp.5 - + + 1.26 V PWM Comp.5 + + -
64 VCC(O)5, 6, 7
Drive 5
62 OUT5
-IN(C)5 17
DTC5 16
-IN(A)6 10
- +
INV Amp.6
CH6
OUT(A)6 11 FB6 13 -IN6 12 Error - Amp.6 + + 1.26 V SCP Comp.6 - + + 1.26 V DTC6 15
PWM Comp.6 + + -
Drive 6
63 OUT6
-IN(C)6 14
8
MB3827
* Enlarged view of C
FB7 5 -IN7-1 6 +IN7 8 10 k -IN7-2 7 - +
Error Amp.7
VB : 2 V 48.5 k PWM - Comp.7 0.77 V - + 30.1 k SCP Comp.7
CH7
Drive 7 1 OUT7 2 RB7
Voffset 1.6 V
+ DTC7 9 -
-IN7(C)8 23
VSCP 0.9 V SCP Comp.8 - + 1.26 V
3 GND(O)5, 6, 7
CTL1-4 CS CTL CTL5 28 Logic CTL6 29 Buff Buff x0.8
+ -
Power Comp.
0.6 V -1.8 V -1.1 V -1.8 V -1.1 V -0.8 V -0.3 V
4 XENB1-6
CS1-6 30 UVLO Power ON/OFF CTL 25 GND 26 VCC
OSC 2V 32
SCP
Ref 2.5 V 24 VREF
27 CTL1-4, 7
33
34 CT
31 CSCP
VB RT
9
MB3827
s ABSOLUTE MAXIMUM RAGINGS
Parameter Power supply voltage Output current Peak output current Power dissipation Storage temperature Symbol VCC VG Io Io PD Tstg OUT pin OUT pin, Duty 5% Ta +25C -- Conditions -- -- Rating Min. -- -- -- -- -- -55 Max. 17 17 20 200 1000* +125 Unit V V mA mA mW C
* : The packages are mounted on the dual-sided epoxy board (10 cm x 10 cm). WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
s RECOMMENDED OPERATING CONDITIONS
Parameter Power supply voltage Reference voltage output current Input voltage Control input voltage Output current Output current setting resistor Triangular wave oscillator frequency Timing capacitor Timing resistor Soft-start capacitor
Short detection capacitor
Symbol VCC IOR VIN VCTL IO RB fOSC CT RT CS CDTC CSCP Ta
Conditions Channel 7 Channel 1 to 6 -- +IN,-IN,-IN(C) pin CTL pin OUT pin RB pin -- -- -- -- DTC7 pin -- --
Value Min. 1.8 4 -1 0 0 1 2.2 100 47 13 -- -- -- -30 Typ. 9 9 -- -- -- 2 24 500 100 18 0.1 1 0.1 +25 Max. 13 13 0 VCC - 1.8 13 15 51 800 1000 47 1.0 10 1.0 +85
Unit V V mA V V mA k kHz pF k F F F C
Operating ambient temperature
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 10
MB3827
s ELECTRICAL CHARACTERISTICS
(Ta = +25C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Parameter Reference voltage block (Ref) Output voltage Output voltage temperature stability Input stability Load stability Short-circuit output current Threshold voltage Hysteresis width Reset voltage
Symbol
Pin No. 24 24 24 24 24 52 52 52
Conditions -- Ta = -30C to +85C VCC = 4 V to 13 V VREF = 0 mA to -1 mA VREF = 2 V VCC = -- --
Value Min. 2.475 -- -10 -10 -20 2.6 -- 1.35 Typ. 2.5 0.5* -- -- -5 2.8 0.2 1.50 Max. 2.525 -- 10 10 -1 3.0 -- 1.65
Unit V % mV mV mA V V V
VREF VREF /VREF Line Load IOS VTH VH VRST
Under voltage lockout protection circuit block (CH7) (UVLO)
Under voltage lockout protection circuit block (CH1 to 6) (UVLO)
Threshold voltage
VTH
1
VCC =
1.3
1.5
1.7
V
Soft-start block (CS)
Input standby voltage Charge current Threshold voltage Input standby voltage Input latch voltage Input source current Oscillator frequency Frequency voltage stability Frequency temperature stability
VSTB ICS VTH VSTB VI ICSCP fOSC f/fdV f/fdT
30 30 31 31 31 31
-- -- -- -- -- --
-- -1.4 0.63 -- -- -1.4 450
50 -1.0 0.68 50 50 -1.0 500
100 -0.6 0.73 100 100 -0.6 550
mV A V mV mV A kHz
Short circuit detection block (SCP)
Triangular waveform oscillator block (OSC)
52,50,49,48, CT = 100 pF, 55,57,60,61, RT = 18 k 62,63 52,50,49,48, 55,57,60,61, VCC = 4 V to 13 V 62,63 52,50,49,48, 55,57,60,61, Ta = -30C to +85C 62,63
--
1
10
%
--
1*
--
%
*: Standard design value.
(Continued)
11
MB3827
(Continued)
(Ta = +25C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Parameter Threshold voltage VT temperature stability
Symbol
Pin No
Conditions
Value Min. 1.45 -- -320 -120 60 -- Typ. 1.50 0.5* -80 -30 100 1.0* 2.4 20 -2.0 100 130 150 -- 1.55 0.5* 15 -20 -- 75 1.0* 1.3 20 -2.0 130 Max. 1.55 -- -- -- -- -- -- 200 -1.0 -- -- -- 20 1.65 -- 30 -- VCC- 0.9 -- -- -- 200 -1.0 --
Unit V % nA nA dB MHz V mV mA A A A mV V % A nA V dB MHz V mV mA A
VTH VT /VT IB
45,38,37, FB = 1.0 V 20,19,13 45,38,37, Ta = -30C to +85C 20,19,13
45,39,36,2 -IN = 0 V (CH1 to 4) 1
Input bias current
18,12 Error amplifier block (CH1 to CH6) Voltage gain Frequency bandwidth AV BW VOH Output voltage VOL Output source current ISOURCE
-IN = 0 V (CH5,6)
45,38,37, DC 20,19,13 45,38,37, AV = 0 dB 20,19,13 45,38,37, 20,19,13 45,38,37, 20,19,13 -- --
2.2 -- -- 50 65 75 -- 1.45 -- -- -100
45,38,37, FB = 1.35 V 20,19,13 FB = 1.35 V (CH1) 45,38,37, FB = 1.35 V (CH2) 20,19,13
FB = 1.35 V(CH3 to 6)
Output sink current
ISINK
Input offset voltage VT temperature stability Error amplifier block (CH7) Input bias current Common mode input voltage rage Voltage gain Frequency bandwidth Output voltage Output source current Output sink current *: Standard design value.
VIO VT /VT IB VCM AV BW VOH VOL ISOURCE ISINK
6 7 5 7 8 5 5 5 5 5 5 5
-IN2 = 0V,FB = 0.55V +IN = 0 V Ta = -30C to +85C -IN2 = VCC +IN = 0 V -- DC AV = 0 dB -- -- FB = 0.55 V FB = 0.55 V
0 60 -- 1.1 -- -- 65
(Continued)
12
MB3827
(Continued)
(Ta = +25C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Parameter Threshold voltage Input bias current Inverse amplifier block (CH6) (INV Amp.) Voltage gain Frequency bandwidth Output voltage Output source current Output sink current Short detection comparator block (CH1-4) (SCP Comp.) Threshold voltage Symbol VTH IB AV BW VOH VOL ISOURCE ISINK VTH Pin No. 11 10 11 11 11 11 11 11 52,50,49, 48,55,57, 60,61 DC AV = 0 dB -- -- OUT = 1.26 V OUT = 1.26 V -- Conditions -- -IN = -0.1 V Value Min. -10 -120 60 -- 2.2 -- -- 75 0.97 Typ. 0 -30 100 1.0* 2.4 20 -2.0 150 1.00 Max. 10 -- -- -- -- 100 -1.0 -- 1.03 Unit mV nA dB MHz V mV mA A V
Input bias current
IB
44,39,36, -IN = 0 V 21
-320
-80
--
nA
Short detection comparator block (CH5,6)(SCP Comp.)
Input offset voltage
VIO
62,63
--
1.22
1.26
1.30
V
Input bias current
IB
17,14,23
-IN(C) = 0 V
-200
-50
--
nA
Short detection comparator block (CH7)(SCP Comp.)
Threshold voltage
VTH
1
--
0.8
0.9
1.0
V
PWM comparator block (CH1) (PWM Comp.-1)
VT0 Threshold voltage VT100
52
Duty cycle = 0 %
0.5
0.6
--
V
52
Duty cycle = 100 %
--
1.3
1.4
V
*: Standard design value.
(Continued)
13
MB3827
(Continued)
(Ta = +25C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Parameter PWM comparator block (CH1) (PWM Comp.-2)
Symbol
Pin No.
Conditions
Value Min. 0.450 Typ. 0.550 Max. --
Unit
VT100 Threshold voltage VT0
50
Duty cycle = 100 %
V
50
Duty cycle = 0 %
--
1.250
1.350
V
PWM comparator block (CH1) (PWM Comp.-3)
VT0 Threshold voltage VT100
49
Duty cycle = 0 %
1.0
1.1
--
V
49
Duty cycle = 100 %
--
1.8
1.9
V
PWM comparator block (CH1) (PWM Comp.-4)
VT100 Threshold voltage VT0
48
Duty cycle = 100 %
0.980
1.080
--
V
48
Duty cycle = 0 %
--
1.780
1.880
V
PWM comparator block (CH2) (PWM Comp.-1)
VT0 Threshold voltage VT100
55
Duty cycle = 0 %
1.0
1.1
--
V
55
Duty cycle = 100 %
--
1.8
1.9
V
PWM comparator block (CH2) (PWM Comp.-2)
VT100 Threshold voltage VT0
57
Duty cycle = 100 %
0.960
1.060
--
V
57
Duty cycle = 0 %
--
1.760
1.860
V
PWM comparator block (CH3 to 6) (PWM Comp.)
VT0 Threshold voltage VT100
60,61,62, Duty cycle = 0 % 63 60,61,62, Duty cycle = 100 % 63
1.0
1.1
--
V
--
1.8
1.9
V
*: Standard design value.
(Continued)
14
MB3827
(Continued)
(Ta = +25C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Parameter PWM comparator block (CH7) (PWM Comp.)
Symbol
Pin No. 1 1 1
Conditions Duty cycle = 0 % -- CT=100pF,RT=18k, RB=24k,RL=390k
Value Min. 0.2 -- 70 1.0 -- -1.0 Typ. 0.3 0.77 80 1.1 1.8 -0.3 Max. -- 0.87 90 -- 1.9 --
Unit V V % V V A
VT0 Threshold voltage VTmax Maximum duty cycle Dtr VTD0 Threshold voltage VTD100 Input current IDTC
Dead time control block (CH1-6) (PWM Comp.)
52,49,48,55, Duty cycle = 0 % 60,61,62,63 52,49,48,55, Duty cycle = 100 % 60,61,62,63 43,42,41,40, DTC = 0.4 V 35,22,16,15
Dead time control block (CH7) (PWM Comp.)
VTD0 Threshold voltage VTD100
1
Duty cycle = 0 %
0.2
0.3
--
V
1
Duty cycle = 100 %
--
0.8
0.9
V
Output source current Output block (CH1-6) (Drive-1) Output sink current
ISOURCE ISINK VOH
52,55,60, Duty 5 %, OUT= 4.4V 61,62,63 52,55,60, Duty 5 %, OUT= 9V 61,62,63 52,55,60, IO = -15 mA 61,62,63 52,55,60, IO = 15 mA 61,62,63 50,57 50,57 50,57 50,57 49
Duty 5 %, OUT= 0V Duty 5 %, OUT= 4V
-- -- 3.5 -- -- -- 3.5 -- -2.6
-90 80 4.0 100 -100 80 4.0 100 -2.0
-- -- -- 300 -- -- -- 300 -1.4
mA mA V mV mA mA V mV mA
Output voltage VOL
Output block (CH1,2) (Drive-2)
Output source current Output sink current Output voltage
ISOURCE ISINK VOH VOL ISOURCE
IO = -15 mA IO = 15 mA
RB= 24k, OUT= 0.7V
Output block (CH1) (Drive-3)
Output source current
Output sink current
ISINK
49
Duty 5 %, OUT= 0.7V
--
40
--
mA
*: Standard design value.
(Continued)
15
MB3827
(Continued)
(Ta = +25C, VCC = 9 V, VSS = 4.4 V, VG = 11 V) Parameter Output block (CH1) (Drive-4) Output source current Output sink current Output voltage
Symbol
Pin No. 48 48 48 48 1
Conditions
Duty 5 %, OUT= 5V Duty 5 %, OUT= 2V
Value Min. -- -- 9.7 -- -2.6 Typ. -100 120 10 1.0 -2.0 Max. -- -- -- 1.3 -1.4
Unit mA mA V V mA
ISOURCE ISINK VOH VOL ISOURCE
IO = -15 mA IO = 15 mA
RB= 24k, OUT= 0.7V
Output block (CH7) (Drive)
Output source current
Output sink current
ISINK
1
Duty 5 %, OUT= 0.7V
--
40
--
mA
Control block (CTL1 to 4,7,XENB1 to 6) (CTL,XENB)
VIH CTL input condition VIL
27,4
Active mode
1.5
--
13
V
27,4
Standby mode
0
--
0.5
V
Input current
ICTL VIH
27,4 28,9 28,9 28,9 26
CTL=5V, XENB=5V Active mode Standby mode CTL= 5V CTL1-4,7= 0V
-- 2.1 0 -- -- -- -- --
100 -- -- 50 -- -- -- 8
200 13 0.7 100 10 10 10 12
A V V A A A A mA
Control block (CTL5,6) (CTL)
CTL input condition VIL Input current ICTL ICCS
General
Standby current
ICCS(O) IG
53,58,64 CTL1-4,7= 0V 51 CTL1-4,7= 0V
Power supply current * Standard design value.
ICC
26,53,58, CTL1-4,7= CTL5 64 =CTL6=5V
16
MB3827
s TYPICAL CHARACTERISTICS
Power supply current vs. power supply voltage Power supply current ICC (mA)
10 8 6 4 2 0 0 2 4 6 8 10 12 14 16
Reference voltage vs. power supply voltage
5
Reference voltage VREF (V)
Ta = +25 C CTL1-4, 7 = CTL5 = CTL6 = 5 V
Ta = +25 C CTL = VCC IREF = 0 mA
2.5
0
0
2
4
6
8
10
12
14
16
Power supply voltage VCC (V) Reference voltage vs. ambient temperature
2.56
Power supply voltage VCC (V)
Reference voltage VREF (V)
2.54 2.52 2.5 2.48 2.46 2.44 -40 -20
VCC = 9 V CTL1-4, 7 = CTL5 = CTL6 = 5 V
0
20
40
60
80
100
Ambient temperature Ta (C)
Reference voltage vs. control voltage
5 Ta = +25 C VCC = 9 V IREF = 0 mA 500
Control current vs. control voltage
Ta = +25 C VCC = 9 V
Reference voltage VREF (V)
Control current ICTL (A)
400 300 200 100 0 0 2 4 6 8 10 12 14 16 CTL5 CTL6 CTL1-4, 7
2.5
0 0 1 2 3 4 5
Control voltage VCTL1-4,7 (V)
Control voltage VCTL (V)
(Continued)
17
MB3827
(Continued)
Triangular wave upper and lower limit voltage vs. timing capacitor Triangular wave upper and lower limit voltage VCT (V)
1 0.8 0.6 0.4 Ta = +25 C VCC = 9 V RT = 18 k
Triangular wave upper and lower limit voltage vs. ambient temperature Triangular wave upper and lower limit voltage VCT (V)
1.2 1 0.8 0.6 0.4 0.2 0 -40 -20 VCC = 9 V RT = 18 k CT = 100 pF
Upper
Upper
Lower
0.2 0 10
Lower
100
1000
10000
0
20
40
60
80
100
Timing capacitor CT (pF) Triangular wave oscillator frequency vs. timing capacitor
10000 Ta = +25 C VCC = 9 V
Ambient temperature Ta (C) Triangular wave oscillator frequency vs. timing resistor
Ta = +25 C VCC = 9 V CT = 47 pF CT = 100 pF 100 CT = 220 pF CT = 470 pF CT = 680 pF CT = 1000 pF 10 10
Triangular wave oscillator frequency fOSC (kHz)
1000
100
RT = 13 k RT = 18 k RT = 30 k RT = 47 k 100 1000 10000
10 10
Triangular wave oscillator frequency fOSC (kHz)
1000
100
Timing capacitor CT (pF) Triangular wave oscillator frequency vs. ambient temperature Triangular wave oscillator frequency fOSC (kHz)
560 540 520 500 480 460 440 -40 -20
Timing resistor RT () Maximum duty cycle vs. triangular wave oscillator frequency (CH7)
100 Ta = +25 C VCC = 9 V
Maximum duty cycle Dtr (%)
VCC = 9 V CTL1-4, 7 = CTL5 = CTL6 = 5 V RT = 18 k CT = 100 pF
90 80 70 60 50
0
20
40
60
80
100
0
200
400
600
800
1000
Ambient temperature Ta (C)
Triangular wave oscillator frequency fOSC (kHz)
(Continued)
18
MB3827
(Continued)
Error amplifier gain and phase vs. frequency (CH1)
40 Ta = +25 C 180 90 0 AV -20 -40 1k 10 k 100 k 1M -90 VCC = 9 V 240 k 4.7 k IN - + 2.4 k 10 F 4.7 k 1.4 V
Phase (deg)
Gain AV (dB)
20 0
44
- + + 1.26 V
45 OUT
-180 10 M
Frequency f (Hz) Error amplifier gain and phase vs. frequency (CH7)
40 Ta = +25 C 180 90 VCC = 9 V 240 k
Gain AV (dB)
20 0 AV -20 -40 1k 10 k 100 k
Phase (deg)
0 -90
IN
4.7 k -+ 10 F 4.7 k
2.4 k 6 8
- 5 + OUT
1.26 V
-180 1M 10 M
Frequency f (Hz) Power dissipation vs. ambient temperature
1200
Power dissipation PD (mW)
1000 800 600 400 200 0 -40 -20
0
20
40
60
80
100
Ambient temperature Ta (C)
19
MB3827
s FUNCTIONAL DESCRIPTION
1. Switching Regulator Function
(1) Reference voltage circuit The reference voltage circuit generates a temperature-compensated reference voltage ( = 2.50 V) using the : voltage supplied from the power supply terminal (pin 26). This voltage is used as the reference voltage for the internal circuits of the IC. The reference voltage of up to 1mA can also be supplied to an external device from the VREF terminal (pin 24). (2) Triangular-wave oscillator circuit By connecting a timing capacitor and a resistor to the CT (pin 34) and the RT (pin 33) terminals, it is possible to generate any desired triangular oscillation waveform (CT : amplitude 0.3V to 0.8V, CT1 : amplitude 1.1V to 1.8V in phase with CT, and CT2 : amplitude 1.1V to 1.8V in inverse phase with CT). The triangular wave is input to CT1, CT2 and the PWM comparator within the IC. (3) Error amplifier (Error Amp.) The error amp. is an amplifier circuit that detects the output voltage from the switching regulator and produces the PWM control signal. The broad in-phase input voltage range of 0 V to Vcc - 1.8 V (1-6 ch) and 0 V to Vcc - 0.9 V (channel 7) provides easy setting from external power supplies. Also, it is possible to provide stable phase compensation for a system by setting up any desired level of loop gain, by connecting feedback resistance and a capacitor between the error amp. output pin and the inverse input pin. (4) Inverter amplifier (Inv. Amp.) The inverter amplifier detects the output voltage (negative voltage) from the switching regulator, and outputs a control signal to the error amplifier. (5) PWM comparator (PWM Comp.) The voltage-pulse width modulator controls the output duty according to the input voltage. (Channel 1 to 2, main side, and channel 3 to 7) During the interval that the error amplifier output voltage and DTC are higher than the triangular wave, the output transistor is turned on. (Channel 1 step-down synchronous rectifier side) During the interval when the error amplifier output voltage is lower than the triangular wave, the output transistor is turned on. (Channel 1 step-up synchronous rectifier side) During the interval when the error amplifier output voltage and DTC3 voltage are lower than the triangular wave, the output transistor is turned on. (6) Output circuit The output circuits is comprised of a totem-pole configuration on both the main side and synchronous rectifier side, and can drive an external PNP transistor (main side) or NPN transistor (channel 1 step-up main side, channel 7) or N-ch MOSFET (synchronous rectifier side).
20
MB3827
2. Channel Control Function
Channel on and off levels are dependent on the voltage levels of the CTL1-4,7 terminal (pin 27), XENB1-6 terminal (pin 4), CTL5 terminal (pin 28), and CTL6 terminal (pin 29). Each Channel On/Off Setting Conditions. Voltage level of CTL pin Channel on/off setting conditions CTL1-4,7 L XENB1-6 X H H CTL5 X X L L H CTL6 X X L H L H ON ON OFF Power CH7 CH1 to 4 OFF ON CH5 CH6 OFF (standby state) OFF ON OFF ON
Note: When the RB1 pin is connected to the VREF pin, the OUT1-3 and OUT1-4 pins are held at "L" level. X : Don't care.
3. Protective Functions
(1) Timer-latch short protection circuit The short detection comparator in each channel detects the output voltage level, and when any channel output voltage falls below the short detection voltage, or the -IN(C)8 terminal (pin 23) voltage falls below the reference voltage, the timer circuit starts operating and the capacitor CSCP connected to the CSCP terminal (pin 31) starts charging. When the capacitor voltage reaches approximately 0.68 V, the output transistor is turned off and the dead time becomes 100%. When actuated, this protection circuit can be reset by turning on the power supply again.(See "METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT".) (2) Under voltage lockout protection circuit A transient state at power-on or a momentary drop of the power supply voltage causes the control IC to malfunction, resulting in system breakdown or system deterioration. Malfunction like the above-mentioned will be prevented, by detecting the internal reference voltage with respect to the power supply voltage, this protection circuit resets the latch circuit to turn off the output transistor and set the duty (OFF) = 100 %, while at the same time holding the CSCP terminal (pin 31) at the "L". The reset is cleared when the power supply voltage becomes greater than or equal to the threshold voltage level of this protection circuit.
21
MB3827
4. Soft Start Operation
(1) Operating Description * Simultaneous "H" level of CTL1-4, 7 terminal, and CTL5 terminal, CTL6 terminal When CTL1-4, 7 terminal (pin 27) , and CTL5 terminal (pin 28) , CTL6 terminal (pin 29) are started at the same time, the capacitor (CDTC) connected to DTC7 terminal (pin 9) starts charging. When the DTC7 terminal (pin 9) voltage reaches 0.6V, the capacitors (CS) connected to the CS1-6 terminal (pin 30) start charging. The error amplifier thus provides the output voltage from channels 1 to 6 with a soft start operation in proportion to the voltage at pin CS1-6.
CTL1-4, 7 (pin 27) CTL5 (pin 28) CTL6 (pin 29) DTC7 (pin 9)
0.77 V 0.6 V 0.3 V
Channel 7 output voltage
CS1-6 (pin 30)
1.26 V
Channel 1 to 6 output voltage
t
(1) (2) (3)
(4)
(1) to (2) : Channel 7 soft start interval (3) to (4) : Channel 1 to 6 soft start interval
22
MB3827
* Starting CTL5 (CTL6) after a soft start on channels 1 to 4 and 7 When CTL5 (CTL6) is started after a soft start on channels 1-4 and 7, the capacitor (CS) connected to the CS1-6 terminal (pin 30) start charging. The error amplifier thus provides the output voltage from channel 5 (6) with a soft start operation in comparison with the voltage at pin CS1-6.
CTL1-4, 7 (pin 27)
0.77 V 0.6 V 0.3 V
DTC7 (pin 9)
Channel 7 output voltage
CS1-6 (pin 30)
1.26 V
Channel 1 to 4 output voltage
CTL5 (pin 28) (CTL6 (pin 29))
Channel 5 output voltage VO5 (Channel 6 output voltage VO6) (1) (2) (3) (5)' (1) to (2) : Channel 7 soft start interval (3) to (4) : Channel 1 to 4 soft start interval (5) to (6) : Channel 5 (channel 6) soft start interval (5)' to (6)': Channel 5 (channel 6) soft start interval (wave form) as CTL5 (CTL6) goes "L" to "H" during a soft start on channels 1-4. (4) (6)' (5) (6)
t
23
MB3827
(2) Setting Methods * Channel 7 soft start interval Before CTL1-4, 7 are ON: Vin is applied along path (A) below and charges CFB7. After CTL1-4, 7 are ON: Along path (B), CFB7 is discharged by R2, R3, D1 at I1 to 15 A on a time constant, and with the fall of V-IN7-1, channel 7 is activated with a soft start. Note : The short detection function is suspended while VDTC is below 0.6V. Channel 7 equivalent circuit of soft start section
A FB7 CFB7 -IN7-1 VSS (O) +IN7 B - + R1 100 k R3 10 k Error Amp.7
100 k
Vin -IN7-2 D1 R2 60 k
: Before CTL1-4, 7 are ON : After CTL1-4, 7 are ON
I1
15 A
Channel 7 soft start operating waveform
V -IN7-1 VSS (O) V -IN7-1
VSS (O)
= 1.55 V :
(V) VDTC7 VCT VFB7 VFB7 0.8 V 0.77 V 0.6 V VCT
0.3 V VDTC7
t CTL1-4, 7
Soft start operate
Short detection suspended during this interval
24
MB3827
* Channel 1 to 6 soft start time tS(sec) = 1.26 x Cs (F) : Note : The short detection function operates during soft starts on channel 1 to channel 6.
s METHOD OF SETTING THE OSCILLATOR FREQUENCY SETTING
The oscillator frequency can be set by the timing resistor RT connected to the RT pin (pin 33), and the timing capacitor CT connected to the CT pin (pin 34). Oscillator frequency: : fOSC [kHz] = 900000 CT [pF] x RT [k]
25
MB3827
s METHODS OF SETTING THE OUTPUT VOLTAGE
1. Channel 1 to 4
VO FB1 15 R1 14 -IN1 R2 - + + Error Amp. VO = 1.26 V R2 (R1 + R2)
1.26 V
- + +
SCP Comp.
1.0 V
2. Channel 5
VO
R1
VO =
1.26 V R3
(R1 + R2 + R3)
R2 18 -IN5 R3 - + +
Error Amp.5
1.26 V
17 -IN (C) 5
- + + 1.26 V
SCP Comp.5
26
MB3827
3. Channel 6
VO
R1 -IN (A) 6 10 - + R2 OUT (A) 6 11 R3 12 -IN6 - + + 1.26 V
INV Amp.6
VO =
V-IN (A) 6 - VOUT (A) 6 R1 R2
[ VOUT (A) 6 = V-IN6 ]
Error Amp.6
27
MB3827
s SAMPLE POWER SUPPLY USING SELF-POWER SUPPLY (Channel 7)
The MB3827 has a built-in self-supply channel (channel 7), capable of supplying the IC with power through transformer winding, with low input voltage (Vin 1.8V) drive capability. Following figure shows a sample of a power supply using the transformer.
Vin
VG (O)
VSS (O) H
FB7
5 6 8 10 k - + 1 OUT7 Error Amp.7
I
-IN7-1 H +IN7
-IN7-2 I 7
Voffset 1.6 V
2 RB7 VCC VCC (O)
Note: The following settings are shown in "APPLICATION EXAMPLE". * VSS(0) is Vin -1.6V, from the voltage offset between -IN7-1 and -IN7-2. * VCC and VCC(0) are set at the winding that produces Vin +1.6V. * VG(0) is set at the winding that produces 8V. Note that because channels 1-6 operate at Vcc 4V, Vcc and Vcc(0) must be set at the winding that produces VIN + 2.2V in order to operate at VIN 1.8V.
28
MB3827
s METHOD OF SETTING THE OUTPUT CURRENT
"Output circuit (main side)" shows the configuration of the output circuits (Drive1-3,Drive7), and "Output current waveform" illustrates how the source current value of the output current waveform has a constant current setting (When channel 1 operates as a step-up unit). Note that the source current is set by the following formula Output source current = (VB/RB) x 80 = 48/RB [A] (VB = 0.6V) : :
Output circuit (main side)
VCC (O)
Source current setting
80I x 33
External NPN transistor Output sourrce current
OUT
I
Output sink current
Sink current setting
70 k x 33
RB 0.6 V RB GND (O)
VB = 0.6V :
Output current waveform
Output source current (peak) Output source current
Output current
0
Output sink current (peak)
t
29
MB3827
s METHOD OF SETTING TIME CONSTANT FOR TIMER-LATCH SHORT PROTECTION CIRCUIT
The short detection comparator (SCP comparator) in each of the channels constantly compares the error amplifier output level to the reference voltage and the -IN(C)8 terminal (pin 23). While the switching regulator load conditions are stable on all channels, or when the voltage level at the -IN(C)8 pin is higher than the reference voltage, LOG_SCP output remains at "H" level, transistor Q1 is on, and the CSCP terminal (pin 31) is held at input standby voltage (VSTB = 50mV). : If the load conditions change rapidly due to a short-circuiting of load, causing the output voltage to drop, or if the voltage at the -IN(C)8 terminal falls below the reference voltage level, the output from the short detection comparator on the corresponding channel or the input at the -IN(C)8 terminal goes to "H" level. This causes transistor Q1 to turn off and the external short protection capacitor CSCP connected to the CSCP pin to charge at 1.0 A. Short Detection Time (tPE) tPE(sec) = 0.68 x CSCP (F) : : When the capacitor CSCP is charged to the threshold voltage VTH = 0.68 V the SR latch is set, and the external PNP is turned off (dead time is set to 100%). At this point the SR latch input is closed and the CSCP terminal is held at input latch voltage (VI = 50 mV). : External PNP transistor
Protection timer-latch short protection circuit
A R1 44 -IN1 R2 1.0 V Drive 1-2 50 OUT1-2 - + SCP Comp.1 Drive 1-1 52 OUT1-1
23 -IN (C) 8 1.26 V
- +
SCP Comp.8 LOG_SCP
Drive 7 CSCP 31 S Q1 R 1 A bias bias
1 OUT7
CSCP
UVLO Ref
Timer-latch short protection circuit
Power ON/OFF CTL
27 CTL1-4, 7
30
MB3827
s TREATMENT WITHOUT USING CSCP
When you do not use the timer-latch short protection circuit, connect the CSCP terminal (pin 31) to GND with the shortest distance.
Treatment when not using CSCP
CSCP
31
s PROCESSING WITHOUT USING CS PIN
When not using the soft start function on channels 1 to 6, the CS1-6 terminal (pin 30)should be left open. When not using the soft start function on channel 7, the DTC7 terminal (pin 9) should be left open.
When no soft start time is set
CS1-6
30
"Open"
"Open"
9
DTC7
31
MB3827
s METHOD OF SETTING THE DEAD TIME
When setting step-up/step-down switching, Zeta type, or fly-back type step-up or inverter output, the output transistor at start-up is in full-on (ON duty cycle = 100%) state. To prevent this, the DTC voltage from the DTC11 terminal (pin 43) to the DTC6 terminal (pin 15) voltage is determined from the VREF voltage, as shown in following figure , so that the output transistor dead time (the maximum value of the ON interval) can be set easily. When the voltage on the DTC5 and DTC6 terminals is lower than the triangular-wave output voltage from the oscillator, the output transistor turns off. The dead time calculation formula assuming that triangular-wave amplitude = 0.7 V and triangular-wave maximum voltage = 1.8 V is given below. : : DUTY(ON)max = : Vdt - 1.1 0.7 x 100[%], Vdt = Rb x VREF Ra + Rb
When you do not use these DTC5 and DTC6 terminals, connect then to VREF terminal (pin 24) as shown following figure (Not setting the channel 5,6 dead time).
Setting the channel 5, 6 dead time (same as for other channels)
VREF
24 Ra 16
VREF
24 Ra
DTC5
DTC6 Rb Vdt
15 Rb Vdt
Not setting the channel 5,6 dead time (same as for other channels)
VREF
24 16
VREF
24
DTC5
DTC6
15
32
MB3827
s PROCESSING WHEN NOT USING THE XENB1-6 PIN
When VREF control (channel 1 to 6 output control) is not used, the XENB1-6 terminal (pin 4) should be shorted to GND using the shortest available connection.
When not using the XENB1-6 pin
4
XNB1-6
s PROCESSING WHEN NOT USING THE CHANNEL 6 INV AMP.
When the channel 6 INV amplifier is not in use, the -IN(A)6 terminal (pin 10), and OUT(A)6 terminal (pin 11) should be shorted using the shortest available connection.
When not using the channel 6 INV Amp.
10 11
-IN(A)6 OUT(A)6
33
MB3827
s APPLICATION EXAMPLE
* General view
A 36 k 0.1 F FB1 45 1 K 44 -IN1 Error - Amp.1 + + 1.26 V DTC1-1 43 - + + 22 k DTC1-3 47 k 20 k DTC1-4 41 18 k RB1 + SEL Comp. 1.26 V Error - Amp.2 + + 1.26 V SCP Comp.2 - + + 22 k 1.0 V DTC2 47 k C Vo3 (3 V) 40 PWM Comp.2-1 + + - - 42 SCP Comp.1 VB1-1 PWM (0.50 V) Comp.1-1 + + - VB1-2 (0.55 V) PWM Comp1-2. + - PWM Comp.1-3 - - + VB1-4 PWM (0.02 V) Comp.1-4 + + - Vo1 (5 V) A U1FWJ44N 22 H CPH3403 U1FWJ44N
CH1
Drive 1-1
VCC(O)1, 2 53 160 OUT1-1 52 54 3300 pF VSS(O)1, 2
FMMT717
12 k
RL1 50
Drive 1-2
50 OUT1-2 100 pF 10 k 47 RB1 OUT1-3 49 VG(O)1 51
CPH3403 FMMT617 4.7 F
1.0 V
Drive 1-3
Drive 1-4
OUT1-4 48 U1FWJ44N
B 36 k
0.1 F FB2 38 1 K 39 -IN2 12 k
GND(O)1 46
4.7 F FMMT717
B
Vo2 (5 V)
CH2
Drive 2-1 91 OUT2-1 55 3300 pF Drive 2-2 OUT2-2 57 22 H
22 H
A
RL2 50
U1FWJ44N 4.7 F
VB2 (0.04 V) PWM Comp.2-2 + -
CPH3403
C 22 k
0.1 F FB3 37 -IN3 16 k 1 K 36
Error - Amp.3 + + 1.26 V SCP Comp.3 - + + 1.0 V
PWM Comp.3 + + -
CH3
Drive 3
58
4.7 F FMMT717 VCC(O) 3, 4
22 H
91 OUT3 60 59 3300 pF VSS(O) 3, 4, 5, 6 22 H
U1FWJ44N 4.7 F
RL3 13
24 k DTC3 47 k 0.1 F D FB4 22 k VIN (3.6 V)
35 D Vo4 (3 V)
20 1 K 21 -IN4
16 k
Error - Amp.4 + + 1.26 V SCP Comp.4 - + +
PWM Comp.4 + + -
CH4
Drive 4 91 OUT4 61
4.7 F FMMT717
22 H
U1FWJ44N 22 H 4.7 F
RL4 13
3300 pF
24 k DTC4 47 k E 0.1 F 150 k FB5 13 k
1.0 V 22 56 GND(O) 2, 3, 4 E Vo2 (5.0 V) Vo5-1 (15 V) RL5-1 1.5 k Vo5-2 (-7.5 V) 3300 pF MA796 4.7 F RL5-2 3 k
19 1 K 18 -IN5
CH5
Error - Amp.5 + + 1.26 V SCP Comp.5 - + + 1.26 V PWM Comp.5 + + -
64 VCC(O) 5, 6, 7 820 OUT5
FMMT717 MA796 4.7 F
15 k
Drive 5
62
-IN(C)5
17
24 k
DTC5 47 k
B
VREF 18 k 2SD1621 27 k Vo6-2 F (-7 V) FMMT717 Vo2(5 V) Vo6-1 (11 V) MA796 4.7 F 820 OUT6 63 3300 pF 4.7 F RL6-1 3 k MA796 Vo6-3 MA796 -14 V RL6-2 1 k
16
F 56 k -IN(A)6 10 k OUT(A)6 11 0.1 F FB6 13 10 k 1 K -IN6 12 10 - + INV Amp.6
CH6
G
Error - Amp.6 + + 1.26 V SCP Comp.6 - + + 1.26 V
PWM Comp.6 + + -
Drive 6
47 k -IN(C)6 G 24 k DTC6 47 k
14
15 VSS(O) (2 V)
4.7 F RL6-3 VG(O) 3.9 k (8 V)
H I RB491D
FB7 0.1 F -IN7-1 H +IN7 -IN7-2
5 6 8 10 k - +
Error Amp.7
VB : 2 V 48.5 k PWM - Comp.7 0.77 V - + 30.1 k SCP Comp.7
CH7
Drive 7 1 2 RB7 OUT7 100 pF 24 k FMMT617 VCC(O) (5.2 V) GND(O) 5, 6, 7
4.7 F 4.7 F MA796
Voffset 1.6 V
MA796 4.7 F
I
7 +
DTC7 1 F
9
- VSCP 0.9 V SCP Comp.8 - + 1.26 V 3
-IN(C)8
23
FMMT717: ZETEX plc. FMMT617: ZETEX plc. CPH3403: SANYO Electric Co., Ltd. U1FWJ44N:TOSHIBA CORPORATION MA796: Matsushita Electronic Components Co., Ltd. 2SD1621: SANYO Electric Co., Ltd. RB491D: ROHM CO.LTD
CTL1-4 CS CTL CTL5 28 Logic CTL6 29 Buff Buff x0.8
+ -
Power Comp.
C
0.6 V -1.8 V -1.1 V -1.8 V -1.1 V -0.8 V -0.3 V
4 XENB1-6
H: Power/CH1 to 6 in OFF L: Control by CTL terminal function
CS1-6
30 UVLO 26
VCC
0.1 F OSC 2V 32 SCP Ref Power ON/OFF CTL 27 CTL1-4, 7
VB 0.1 F
33 RT
34
18 k
CT 100 pF
31 CSCP 0.1 F
2.5 V 24 25 VREF GND
H: ON (Power/CH1 to 4,7) L: OFF (Standby mode)
0.1 F
34
MB3827
* Enlarged view of A
A 36 k
0.1 F FB1 45 1 K 44 -IN1
12 k DTC1-1
Error - Amp.1 + + 1.26 V
VB1-1 (0.50 V)
VB1-2 (0.55 V)
PWM Comp.1-1 + + - PWM Comp1-2. +
CH1
Drive 1-1
VCC(O)1, 2 53 160 OUT1-1 3300 pF VSS(O)1, 2
FMMT717
Vo1 (5 V) A U1FWJ44N 22 H CPH3403
52 54
U1FWJ44N
RL1 50
43 - + +
SCP Comp.1
22 k DTC1-3 47 k
1.0 V 42
20 k DTC1-4 41 18 k RB1 + SEL Comp. 1.26 V Error - Amp.2 + + 1.26 V SCP Comp.2 - + + 22 k 1.0 V DTC2 47 k 40 -
- PWM Comp.1-3 - - + VB1-4 PWM (0.02 V) Comp.1-4 + + -
Drive 1-2
Drive 1-3
50 OUT1-2 100 pF 10 k 47 RB1 OUT1-3 49 VG(O)1 51
CPH3403 FMMT617 4.7 F
Drive 1-4
OUT1-4 48 U1FWJ44N
B 36 k
0.1 F FB2 38 -IN2 12 k 1 K 39
GND(O)1 46 PWM Comp.2-1 + + - PWM Comp.2-2 + - Drive 2-2
4.7 F FMMT717
B
Vo2 (5 V)
CH2
Drive 2-1 91 OUT2-1 55 3300 pF OUT2-2 57 22 H
22 H
U1FWJ44N 4.7 F
VB2 (0.04 V)
RL2 50
CPH3403
C 22 k
0.1 F FB3 37 1 K 36 -IN3 16 k
C Error - Amp.3 + + 1.26 V SCP Comp.3 - + + 1.0 V PWM Comp.3 + + -
Vo3 (3 V)
CH3
Drive 3
58
FMMT717 VCC(O) 3, 4 4.7 F 22 H
91 OUT3 60 59 3300 pF VSS(O) 3, 4, 5, 6 22 H
U1FWJ44N 4.7 F
RL3 13
24 k DTC3 47 k
35
FMMT717: ZETEX plc. FMMT617: ZETEX plc. CPH3403: SANYO Electric Co., Ltd. U1FWJ44N:TOSHIBA CORPORATION MA796: Matsushita Electronic Components Co., Ltd. 2SD1621: SANYO Electric Co., Ltd. RB491D: ROHM CO.LTD
35
MB3827
* Enlarged view of B
D 22 k VIN (3.6 V)
0.1 F FB4
20 1 K 21 -IN4
16 k
Error - Amp.4 + + 1.26 V SCP Comp.4 - + +
PWM Comp.4 + + -
CH4
Drive 4 91 OUT4 61
4.7 F FMMT717
D
Vo4 (3 V)
22 H
U1FWJ44N 22 H 4.7 F
RL4 13
3300 pF
24 k DTC4 47 k E 0.1 F 150 k FB5 13 k
1.0 V 22 56 GND(O) 2, 3, 4 E Vo2 (5.0 V) Vo5-1 (15 V) RL5-1 1.5 k Vo5-2 (-7.5 V) 3300 pF MA796 4.7 F RL5-2 3 k
19 1 K 18 -IN5
CH5
Error - Amp.5 + + 1.26 V SCP Comp.5 - + + 1.26 V PWM Comp.5 + + -
64 VCC(O) 5, 6, 7 820 OUT5
FMMT717 MA796 4.7 F
15 k
Drive 5
62
-IN(C)5
17
24 k
DTC5 47 k
16
F 56 k -IN(A)6 10 k OUT(A)6 11 0.1 F FB6 13 10 k 1 K -IN6 12 10 - + INV Amp.6
CH6
G 2SD1621
VREF 18 k 27 k
Error - Amp.6 + + 1.26 V SCP Comp.6 - + + 1.26 V
PWM Comp.6 + + -
Vo6-2 F (-7 V) FMMT717 Vo2(5 V) Vo6-1 (11 V) MA796 4.7 F 820 OUT6 63 3300 pF 4.7 F RL6-1 3 k MA796 Vo6-3 MA796 -14 V RL6-2 1 k
Drive 6
47 k -IN(C)6 G 24 k DTC6 47 k
14
4.7 F RL6-3 3.9 k
15
FMMT717: ZETEX plc. FMMT617: ZETEX plc. CPH3403: SANYO Electric Co., Ltd. U1FWJ44N:TOSHIBA CORPORATION MA796: Matsushita Electronic Components Co., Ltd. 2SD1621: SANYO Electric Co., Ltd. RB491D: ROHM CO.LTD
36
MB3827
* Enlarged view of C
VG(O) (8 V) VSS(O) (2 V)
H I RB491D
FB7 0.1 F -IN7-1 H +IN7 -IN7-2
5 6 8 10 k - +
Error Amp.7
VB : 2 V 48.5 k PWM - Comp.7 0.77 V - + 30.1 k SCP Comp.7
CH7
Drive 7 OUT7 1 100 pF 2 RB7 24 k FMMT617 VCC(O) (5.2 V) GND(O) 5, 6, 7
4.7 F 4.7 F MA796
Voffset 1.6 V
MA796 4.7 F
I
7 +
DTC7 1 F
9
- VSCP 0.9 V SCP Comp.8 - + 1.26 V 3
-IN(C)8
23
CTL1-4 CS CTL CTL5 28 Logic CTL6 29 Buff Buff x0.8
+ -
Power Comp.
0.6 V -1.8 V -1.1 V -1.8 V -1.1 V -0.8 V -0.3 V
4 XENB1-6
H: Power/CH1 to 6 in OFF L: Control by CTL terminal function
CS1-6
30 UVLO 26
VCC
0.1 F OSC 2V 32 SCP Ref Power ON/OFF CTL 27 CTL1-4, 7
H: ON (Power/CH1 to 4,7) L: OFF (Standby mode)
VB 0.1 F
33 RT
34
18 k
CT 100 pF
31 CSCP 0.1 F
2.5 V 24 25 VREF GND
0.1 F
FMMT717: ZETEX plc. FMMT617: ZETEX plc. CPH3403: SANYO Electric Co., Ltd. U1FWJ44N:TOSHIBA CORPORATION MA796: Matsushita Electronic Components Co., Ltd. 2SD1621: SANYO Electric Co., Ltd. RB491D: ROHM CO.LTD
37
MB3827
s REFERENCE DATA
Efficiency vs. load current (ch1, step-up/step-down switching method)
100 Vin = 4.2 V 90
to OUT1-1
5V output
Iin Vin = 6 V Vin
A 22 H
Vo1 (5 V)
Vin = 3 V
Efficiency (%)
Vin = 3.6 V
to OUT1-2
IL
80 Vin = 2.5 V 70 4.7 F
to OUT1-3
60
to OUT1-4
50 0 50 100 150 200 250 300 350 400 450 500
= Vo1 x IL x 100 (%) Vin x Iin
Load current IL (mA)
Efficiency vs. load current (ch2, Zeta Method with Synchronous Rectification)
100
5V output
90
Vin = 4.2 V
Vin = 6 V Vo2 (5 V)
Efficiency (%)
80 Vin = 3 V 70 Vin = 3.6 V Vin = 2.5 V
to OUT2-1
Iin Vin
4.7 F
B
22 H 22 H IL 4.7 F
60
to OUT2-2
50 0 50 100 150 200 250 300 350 400 450 500
= Vo2 x IL x 100 (%) Vin x Iin
Load current IL (mA)
38
MB3827
s USAGE PRECAUTIONS
1. Never use settings exceeding maximum rated conditions.
Exceeding maximum rated conditions may cause permanent damage to the LSI. Also, it is recommended that recommended operating conditions be observed in normal use. Exceeding recommended operating conditions may adversely affect LSI reliability.
2. Use this device within recommended operating conditions.
Recommended operating conditions are values within which normal LSI operation is warranted. Standard electrical characteristics are warranted within the range of recommended operating conditions and within the listed conditions for each parameter.
3. Printed circuit board ground lines should be set up with consideration for common impedance. 4. Take appropriate static electricity measures.
* * * * Containers for semiconductor materials should have anti-static protection or be made of conductive material. After mounting, printed circuit boards should be stored and shipped in conductive bags or containers. Work platforms, tools, and instruments should be properly grounded. Working personnel should be grounded with resistance of 250 k to 1 m between body and ground.
s ORDERING INFORMATION
Part number MB3827PFV Package 64-pin plastic LQFP (FPT-64P-M03) Remarks
39
MB3827
s PACKAGE DIMENSION
64-pin Plastic LQFP (FPT-64P-M03)
12.000.20(.472.008)SQ 10.000.10(.394.004)SQ
48 33
Pins width and pins thickness include plating thickness.
49
32
0.08(.003)
Details of "A" part
INDEX
1.50 -0.10 .059 -.004
17
+0.20 +.008
(Mounting height)
64
"A" LEAD No.
1 16
0~8
+0.08 -0.03 +.003 -.001
0.500.08 (.020.003)
0.18 .007
0.08(.003)
M
0.1450.055 (.006.002) 0.500.20 (.020.008) 0.45/0.75 (.018/.030)
0.100.10 (.004.004) (Stand off) 0.25(.010)
C
1998 FUJITSU LIMITED F64009S-3C-6
Dimensions in: mm (inches)
40
MB3827
FUJITSU LIMITED
For further information please contact:
Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: 81(44) 754-3763 Fax: 81(44) 754-3329
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
http://www.fujitsu.co.jp/
North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220
http://www.fmap.com.sg/
F9906 (c) FUJITSU LIMITED Printed in Japan


▲Up To Search▲   

 
Price & Availability of MB3827

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X